

National Voluntary Laboratory Accreditation Program

ISO/IEC 17025:1999 ISO 9002:1994

Scope of Accreditation

Revised 9/22/2003

Page 1 of 9

CALIBRATION LABORATORIES

NVLAP LAB CODE 105000-0

OAK RIDGE METROLOGY CENTER

P.O. Box 2009 Oak Ridge, TN 37831-8091

W. T. (Bill) McKeethan

Phone: 865-574-2707 Fax: 865-574-2802 E-Mail: mckeethanwt@y12.doe.gov

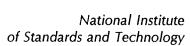
NVLAP Code: 20/A01

ANSI/NCSL Z540-1-1994; Part 1

Compliant

DIMENSIONAL

NVLAP Code: 20/D03


Gage Blocks, Steel and Chrome Only

Range	Best Uncertainty $(\pm)^{note\ I}$	Remarks
0.010 to 0.090	2.5 μin	Mechanical Comparison
0.01 to 1.000	$1.9~\mu \mathrm{in}$	Mechanical Comparison
2.0 to 4.0	$(2 \mu in + 0.8L) \mu in^{note 3}$	Mechanical Comparison

March 31, 2004

Effective through

Man R. Mall

National Voluntary Laboratory Accreditation Program

ISO/IEC 17025:1999 ISO 9002:1994

Scope of Accreditation

Revised 9/22/2003

Page 2 of 9

CALIBRATION LABORATORIES

NVLAP LAB CODE 105000-0

OAK RIDGE METROLOGY CENTER

NVLAP Code: 20/D05

Length

Range Best Uncertainty $(\pm)^{note 1}$ Rem	marks
---	-------

0 to 1.35 m

 $(0.3 + 0.4L) \mu m^{note 4}$

Step and End Gages using M-60 Coordinate Measuring Machine

0 to 1.2 m

 $(0.3 + 0.4L) \mu m^{note 4}$

Step and End Gages using M-48 Coordinate Measuring Machine

NVLAP Code: 20/D06 Line Standards - Line Scales

Range

Best Uncertainty (±)note 1, 4

Remarks

0 to 800 mm

 $(0.2 + 0.63L) \mu m$

CMM (optical)

NVLAP Code: 20/D08

Optical Grid Plates/Reference Planes

Range

Best Uncertainty $(\pm)^{notes 1,4}$

Remarks

up to 350 mm

 $(0.6 + 0.15L) \mu m$

CMM (optical), Max Length and

Width, (600 x 600) mm

350 to 848 mm

 $(0.6 + 0.39L) \mu m$

CMM (optical), Max Length and

Width, (600 x 600) mm

March 31, 2004

Effective through

National Voluntary Laboratory Accreditation Program

ISO/IEC 17025:1999 ISO 9002:1994

Scope of Accreditation

CALLED STATES OF AREIN

Page 3 of 9

Revised 9/22/2003

CALIBRATION LABORATORIES

NVLAP LAB CODE 105000-0

OAK RIDGE METROLOGY CENTER

Field of view note 5

0.2 μm

CMM (optical), Measurements taken within camera field of view

NVLAP Code: 20/D09

Roundness

Range

Best Uncertainty (±)note 1

Remarks

to 6" Diameter and 4" Height

 $0.1 \mu m$

Roundness Instrument


NVLAP Code: 20/D12

Surface Texture

Range	Best Uncertainty $(\pm)^{note 1}$	Remarks
41 μ in to 120 μ in (1.04 μ m to 3.05 μ m)	$5.51 \mu in (0.14 \mu m)$	Ra (Roughness Average)
13 μ in to 40 μ in (0.33 μ m to 1.02 μ m)	1.92 μ in (0.05 μ m)	Ra (Roughness Average)
12 μin (0.31 μm)	$0.62 \mu in (0.02 \mu m)$	Ra (Roughness Average)

March 31, 2004

Effective through

National Voluntary Laboratory Accreditation Program

ISO/IEC 17025:1999 ISO 9002:1994

Scope of Accreditation

Revised 9/22/2003

Page 4 of 9

CALIBRATION LABORATORIES

NVLAP LAB CODE 105000-0

OAK RIDGE METROLOGY CENTER

NVLAP Code: 20/D15 Two Dimensional Gages

Two Dimensional Gages *Range*

Best Uncertainty $(\pm)^{note\ 1}$

Remarks

0.8 m x 1.2 m

 $(0.45 + 0.6L) \mu m^{note 4}$

M-48 CMM

NVLAP Code: 20/D18

Gears

Range	Best Uncertainty $(\pm)^{note\ 1}$	Remarks
to 6" Diameter	$0.9~\mu\mathrm{m}$	Involute Profile
to 6" Diameter and Infinite Lead	$0.8~\mu\mathrm{m}$	Helix
to 6" Diameter and 99" Lead	$0.9~\mu\mathrm{m}$	Helix
to 6" Diameter and 32" Lead	$1.1~\mu\mathrm{m}$	Helix
to 6" Diameter and 16" Lead	1.2 μm	Helix
to 6" Diameter and 11" Lead	1.4 μm	Helix
to 6" Diameter (pin offset)	$0.7~\mu\mathrm{m}$	Pin Master
to 6" Diameter (pin diameter)	$0.5~\mu\mathrm{m}$	Pin Master
to 6" Diameter (pin roundness)	0.3 μm	Pin Master
to 24" Diameter	1.6 arcseconds	Index and Runout

March 31, 2004

Effective through

Man K. Wall

National Voluntary Laboratory Accreditation Program

ISO/IEC 17025:1999 ISO 9002:1994

Scope of Accreditation

Revised 9/22/2003

Page 5 of 9

CALIBRATION LABORATORIES

NVLAP LAB CODE 105000-0

OAK RIDGE METROLOGY CENTER

TIME AND FREQUENCY

NVLAP Code: 20/F01 Frequency Dissemination

Range

Best Uncertainty (±)in Hznote 1

Remarks

1 MHz, 5 MHz, 10 MHz

 1.01×10^{-10}

Comparison using FMS

1 MHz, 5 MHz, 10 MHz

 5.3×10^{-10}

Comparison

1 Hz to < 1 MHz

 $(1 \times 10^{-6} + 0.1 \text{ Hz})^{note 2}$

Direct Reading

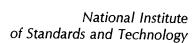
1 MHz to 10 MHz

1 x 10^{-8note 2}

Direct Reading

> 10 MHz to 1 GHz

1 x 10^{-7note 2}


Direct Reading

March 31, 2004

Effective through

For the National Institute of Standards and Technology

NVLAP-01S (06-01)

National Voluntary Laboratory Accreditation Program

ISO/IEC 17025:1999 ISO 9002:1994

Scope of Accreditation

* STATES OF AREAS

Revised 9/22/2003

Page 6 of 9

CALIBRATION LABORATORIES

NVLAP LAB CODE 105000-0

OAK RIDGE METROLOGY CENTER

MECHANICAL

NVLAP Code: 20/M08

Mass

Range	Best Uncertainty (\pm)in $mg^{note\ 1}$	Remarks
30 kg	28	Echelon II
25 kg	26	Echelon II
20 kg	25	Echelon II
10 kg	12	Echelon II
5 kg	7	Echelon II
3 kg	6	Echelon II
2 kg	6	Echelon II
1 kg	1.183	Echelon II
500 g	0.593	Echelon II
300 g	0.254	Echelon II
200 g	0.238	Echelon II
100 g	0.088	Echelon II
50 g	0.058	Echelon II
30 g	0.076	Echelon II

March 31, 2004

Effective through

Man J. M.L.

National Voluntary Laboratory Accreditation Program

ISO/IEC 17025:1999 ISO 9002:1994

Scope of Accreditation

Revised 9/22/2003

Page 7 of 9

CALIBRATION LABORATORIES

NVLAP LAB CODE 105000-0

OAK RIDGE METROLOGY CENTER

20 g	0.030	Echelon II
10 g	0.046	Echelon II
5 g	0.0058	Echelon II
3 g	0.0052	Echelon II
2 g	0.0064	Echelon II
1 g	0.0085	Echelon II
500 mg	0.0031	Echelon II
300 mg	0.0057	Echelon II
200 mg	0.0034	Echelon II
100 mg	0.016	Echelon II
50 mg	0.0009	Echelon II
30 mg	0.034	Echelon II
20 mg	0.02	Echelon II
10 mg	0.089	Echelon II
5 mg	0.013	Echelon II
3 mg	0.027	Echelon II
2 mg	0.015	Echelon II

March 31, 2004

Effective through

National Voluntary Laboratory Accreditation Program

ISO/IEC 17025:1999 ISO 9002:1994

Scope of Accreditation

SPATES OF MILES

Revised 9/22/2003

Page 8 of 9

CALIBRATION LABORATORIES

NVLAP LAB CODE 105000-0

OAK RIDGE METROLOGY CENTER

1 mg

0.02

Echelon II

THERMODYNAMIC

NVLAP Code: 20/T05

Pressure

Range

Best Uncertainty (±) ppm^{note 1}

Remarks

Pneumatic Deadweight Piston Gauge (absolute Mode) - Direct Pressure Comparison

1.2 to 23.6 psia [8.3 to 162.7 Kpa]

500

5.7 to 95.6 psia [39.3 to 659.1 Kpa]

101

41.9 to 1001.6 psia [288.9 to 6905.8 Kpa]

45

Pneumatic Deadweight Poston Gauge (Gauge Mode) - Direct Pressure Comparison

1.2 to 23.6 psia [8.3 to 162.7 Kpa]

26

Nitrogen

5.7 to 95.6 psia [39.3 to 659.1 Kpa]

22

Nitrogen

41.9 tp 1001.6 psia [288.9 to 6905.8 Kpa]

43

Nitrogen

Hydraulic Deadweight Piston Gauge (Gauge Mode) - Direct Comparison

203 to 3771 psig [1.4 to 26 Mpa]

60

Oil

March 31, 2004

Effective through

National Voluntary Laboratory Accreditation Program

ISO/IEC 17025:1999 ISO 9002:1994

Scope of Accreditation

* CALLED STATES OF AREA

Revised 9/22/2003

Page 9 of 9

CALIBRATION LABORATORIES

NVLAP LAB CODE 105000-0

OAK RIDGE METROLOGY CENTER

2031 to to 19,870 psig [14 to 137 Mpa]

70

Oil

4061 to 39,595 psig [28 to 273 Mpa]

70

Oil

NVLAP Code: 20/T07

Resistance Temperature Devices

Range

Best Uncertainty (±)note 1

Remarks

0.01 °C to 29.7646 °C

0.001 °C

Comparison

March 31, 2004

Effective through

^{1.} Represents an expanded uncertainty using a coverage factor, k=2

^{2.} Realizable uncertainty depends on frequency being measured, customer requirements, and suitability of customer's equipment.

^{3.} L is length in inches.

^{4.} L is length in meters.

^{5.} Glass Reticles, Stage Micrometers, Glass Magnification Scales, Orthogonality Standards, and Calibration Charts.